This article was downloaded by: [Tomsk State University of Control

Systems and Radio]

On: 19 February 2013, At: 13:10

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street,

London W1T 3JH, UK

Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl17

Dielectric Spectroscopy of Side Chain Siloxane Liquid Crystal Copolymers

C M Haws ^a , M G Clark ^a & C B Mcardle ^a a GEC Research Limited, East Lane, Wembley, Middlesex, United Kingdom, HA9 JPP Version of record first published: 13 Dec 2006.

To cite this article: C M Haws, M G Clark & C B Mcardle (1987): Dielectric Spectroscopy of Side Chain Siloxane Liquid Crystal Copolymers, Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 153:1, 537-546

To link to this article: http://dx.doi.org/10.1080/00268948708074564

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or

damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst., 1987, Vol. 153, pp. 537-546 Photocopying permitted by license only © 1987 Gordon and Breach Science Publishers S.A. Printed in the United States of America

DIELECTRIC SPECTROSCOPY OF SIDE CHAIN SILOXANE LIQUID CRYSTAL COPOLYMERS

C M Haws, M G Clark, C B McArdle GEC Research Limited, East Lane, Wembley, Middlesex, United Kingdom, HA9 7PP

Abstract Side chain siloxane liquid crystal polymers (LCPs) are being investigated as potential optical storage media. Dielectric relaxation spectroscopy has been used to examine the real and imaginary components permittivity as function of frequency а temperature. The spectra obtained are discussed from the standpoint of both their molecular significance their device implications. Spectra of particular crystal homopolymers and a class have exhibit copolymers been found to features due to the larger free volume available to mesogenic moieties in the copolymers. five LC behaviour of copolymers discussed and then two equivalent pairs of homopolymer and copolymer LCPs are considered in more detail. anomalous relaxation behaviour relaxation attributed internal processes are reorientations.

INTRODUCTION

Recently there has been considerable interest in developing device using liquid side-chain polymers [LCPs] 1,2 . These materials combine the mechanical properties of polymers with the electrical and properties of liquid crystals. The properties of several side chain siloxane LCPs synthesised by G.W. Gray's group at Hull University have been studied provide operational parameters for device applications and information about molecular dynamics.

The real and imaginary components of permittivity have been measured as a function of frequency and temperature. relaxations are seen as peaks in the frequency Dipolar of imaginary component and their relative the spacing and temperature response elucidate the molecular paper the relaxation behaviour In this dynamics. several LC copolymers is discussed and compared with the response of comparable homopolymers. Knowledge of the conductivity is a monitor of material quality, while the frequencies of dielectric relaxation must be known if an AC field is to be applied across the sample without power The dielectric spectrum is also indicative of the feasibility of dielectric heating or switching of LC polymer devices.

EXPERIMENTAL

A microcomputer controlled HP4192A impedance analyser was used to measure the capacitance and conductivity of each sample as a function of frequency. The temperature regulated to within 0.1°C using a Linkam TH600 hot stage controller. The LCPs were retained in 25 µm sandwich cells with a simple overlap electrode $(5 \Omega/\square)$ into low resistivity Permittivity measurements on standard liquids 1,2-dichloromethane, gold label, Aldrich) agreed with the literature to between 1 and 5% depending on the quality of the cell.

The loss spectra of the LCPs were fitted interactively using a conductivity curve and two overlapping Fuoss Kirkwood curves. The fitting programme was supplied by

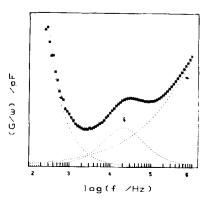
staff at the University College of Wales and the criteria for adequacy of fit are described elsewhere³.

RESULTS AND DISCUSSION

The structures and transition temperatures of the materials studied are shown in Table $1. \$

TABLE I Structures and transition data of the LCPs.

The general structure of the copolymers is: $(CH_3)_3 Si0 [Si0(CH_3)X)]_a [Si0(CH_3)_2]_b Si (CH_3)_3$ where a:b = 21:19


CODE	X	TRANSITION DATA
GN3/14	-(CH ₂) ₆ ,0.C ₆ H ₄ .CU ₂ .C ₆ H ₄ .CN	$T_g = -12^{\circ}C T_{S_A} - I = 100^{\circ}C$
GN 3/3	-(CH ₂) ₅ .0.C ₆ H ₄ .CO ₂ .C ₆ H ₄ .CN	$T_g = -9^{\circ}C T_{S_A} - 1 = 119^{\circ}C$
GN3/19	-(CH ₂)5.0.C6H ₄ .C6H ₄ .CN	$T_g = -14^{\circ}C T_{S_A} - I = 107^{\circ}C$
GN3/16	$-(CH2)8.0.C6H4.CO2.(\circ-CH3.C6H3).CN$	$T_g = -15^{\circ}C T_{S_A} - I = 65^{\circ}C$
GN 3/22	-(CH2)6.0.C6H4.CU2.C6H4.UCH3	$T_{\rm g} = -15^{\circ}C$ $T_{\rm N} - I = 57^{\circ}C$
GN3/18	$-(CH_2)_6.0.C_6H_4.CO_2.C_6H_4.CO_2CH_2C^*H(CH_3)(C_2H_5)$	$T_g = -25^{\circ}C T_{S_A} - I = 30^{\circ}C$
GN3/17+	$-(CH_2)_{6.0.C_6H4.C0_2.C_6H4.C0_2CH2C}^*H(CH_3)(C_2H_5)$	$T_g = -9^{\circ}C$ $T_{S_C} - I = 76^{\circ}C$

+GN3/17 is a homopolymer, i.e. X is attached to all backbone sites,

giving (CH₃)₃Si0[Si0(CH₃)X]_nSi(CH₃)₃ where $n \approx 40$.

The relaxation behaviour of GN3/17 and GN3/18 will be considered separately later. Two overlapping loss peaks are seen in the spectra of the other LCPs. From studies of aligned samples they may be assigned to the δ and α relaxation mechanisms described in the literature for similar LCPs⁴. A typical fitted curve is shown in Figure 1.

The δ loss peak arises from the longitudinal component of the mesogen's dipole whereas the α peak also includes contributions from the transverse component. The relative peak amplitudes may be related to the degree of alignment of the director 5. The variation of δ peak amplitude with temperature for the copolymers is shown in Figure 2. change of alignment suggests that the thermal stability of written onto films of these materials using negative or positive contrast modes, according to the properties of the LCP being used.

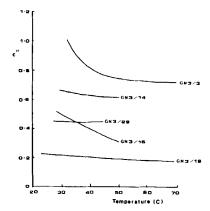


Figure 1 GN3/14 at 56°C fitted with a conductivity curve and two Fuoss Kirkwood curves

Figure 2 Variations of δ peak amplitude for unaligned samples of the copolymers. [The curve for GN3/22 was produced using the α peak of a homogeneously aligned sample].

The δ and α peak behaviour of the copolymers is summarised in Table 2. Also shown is the behaviour of LCP "A" which is the homopolymer equivalent of GN3/16 and has been extensively studied by Attard⁶.

TABLE	2	δ	and	α	relaxation	peak	parameters

	GN3/14	GN3/3	GN3/19	GN/22	GN 3/16	ó A
T [#] (°C)	56.4	67.4	65	26	30.6	60
δ Peak position at	4.33	4.66	4.76	2.94	3.3	3.57
$T (log_{10} H_z)$						
α Peak position at	6.94	6.92	6.95	6.66	4.92	4.82
$T(log_{10} H_z)$						
δ Peak Activation	92.5	96.5	80	124	98	120 *
Energy (kJ/mol)						
α peak Activation	89	87	68	48	72	130 *
Energy (kJ/mol)						
	19.2	17.7	10.7	15.4	8.4	_
X-ray data ⁷ (Å))						

 $[\]neq$ T/Tc = 0.92 where Tc is the clearing temperature.

The features of the spectra of each material are discussed below and interpreted in terms of molecular hindering.

GN3/14

The relatively high α -peak activation energy with respect to the other LC copolymers and the small shift in alignment with temperature (see Figure 2) suggests a restriction of the transverse dipole component motion and a fairly stable director configuration. This is due to steric hindrance arising from the odd alkoxy spacer length⁸.

^{*} Shown to be very temperature dependent

GN3/3

In contrast to GN3/14, this exhibits a large shift in alignment with temperature and this, together with the fairly high frequency of the δ -peak position, suggests a relatively unhindered structure. Since the only difference is the even spacer length the explanation may be that this aligns the mesogen approximately orthogonal to the backbone, reducing the steric hindrance.

GN3/19

The loss peaks of this LCP are at high frequencies and have low activation energies. There is also a small peak height The stable director configuration shift with temperature. and relatively unrestricted dipole motion may be associated with the specific local fluid structure. From Table 2 the overlap distance is virtually identical observed in the corresponding monomeric cyanobiphenyl. the polymers such local structure will induce inter-chain correlations which may stabilise the director configuration.

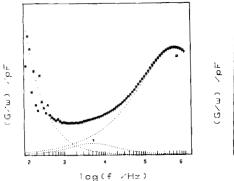
GN3/22

The δ peak is at a low frequency and has a high activation energy while the α peak is well separated and has activation energy. The weak longitudinal component is restricted by steric hindrance, while the free transverse motion result from the may relatively unrestricted methoxy terminating species from cooperative effects between adjacent ester groups.

GN3/16 and A

The loss behaviour of this equivalent pair of homopolymer

and copolymer LCPs may be compared. The loss peaks of the copolymer are narrower (i.e. they are more Debye-like), they have lower activation energies and a wider separation. The copolymer structure presents less hindrance to the motion of the mesogenic dipole components.


GN3/17 and GN3/18

These are an equivalent pair of homopolymer and copolymer LCPs which produce anomalous loss spectra. Examples at 0.95 Tc and 1.06 Tc are given in Figures 3 to 6 and the peak positions are summarised in Table 3.

TABLE 3 Peak Positions of GN3/17 and GN3/18

LCP	Temperature	Peak 1 Position	Peak 2 Position		
		(log ₁₀ Hz)	(log ₁₀ Hz)		
GN3/17	0.95 Tc (55°C)	4.5	6.8		
	1.06 Tc (95°)	5.34	6.14		
GN3/18	0.95 Tc (15°C)	3.7	5.8		
	1.06 Tc (50°C)	4.61	5.22		

The relaxation behaviour of the copolymer and homopolymer are similar the large core overlap in due to studies of these LCPs showed each case. X-ray interdigitation of the mesogenic groups with complete overlap for the copolymer. In figures 3 and 4 the lower frequency peak is interpreted as a superposition of δ The relatively high microviscosity of and α relaxations. copolymer (due to the interdigitation) relaxation peaks to be at lower frequencies than of the homopolymer.

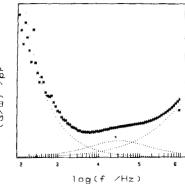
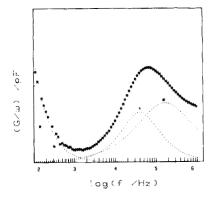



Fig 3: GN3/18 at 0.95 T_c (15°C)

Fig 4: GN3/17 at 0.95 T_c (55°C)

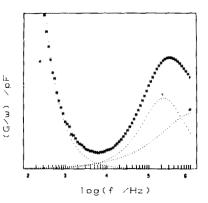


Fig 5: GN3/18 at 1.06 T_c (50°C)

Fig 6: GN3/17 at 1.06 T_c (95°)

at high large peak occurring frequency spectra of Figures 3 and 4 may be fitted with overlapping peaks at lower temperatures. It is proposed that these peaks arise from internal reorientation of the ester groups and are analogous to the β relaxations seen by Zentel⁴. The splitting of the peak may result from the presence of two ester groups in this mesogen, although the particularly wide splitting for GN3/17 and the greatly amplitudes of the components suggest differing due to some other unidentified higher component may be internal reorientation, the lower peak being an unresolved peak due to the ester reorientations.

Figures 5 and 6 show the isotropic spectra. The peak can be clearly resolved experimental components reminiscent of those seen in a study of dialkyl phenyl benzoate esters9. In that case the splitting was attributed to large anisotropy of the rotational а diffusion tensor in the isotropic phase. The interpretation gives values for Dil rot./Di rot. 7.5 for GN3/18 and 12 for GN3/17. This suggests a degree of local ordering remains in the isotropic phase.

ACKNOWLEDGEMENTS

This work is supported by the UK Department of Trade and Industry under the Joint Optoelectronics Research Scheme. The LCPs were synthesised by Mr G Nestor and Dr W Hawthorne at Hull University.

REFERENCES

- 1. H. J. Coles, R. Simon, UK Patent GB2146787A (1985)
- C. B. McArdle, M. G. Clark, C. M. Haws, M. C. K. Wiltshire, A. Parker, G. Nestor, G. W. Gray, D. Lacey, K. J. Toyne, <u>Liquid Crystals</u> In Press
- G. S. Attard, G. Williams, <u>Liquid Crystals</u> 1 (3) 253 (1986)
- R. Zentel, G. R. Strobl, H. Ringsdorf, <u>Macromolecules</u> 18, 960 (1985)
- 5. G. S. Attard, G. Williams, Polymer Comm. 27 2 (1986)
- G. S. Attard, J. J. Moura-Ramos, G. Williams, J. Polym. Sci. Part B 25 1099 (1987)
- H. Sutherland, British Liquid Crystal Group Meeting Hull (1987) Poster Presentation
- P. A. Gemmell, G. W. Gray, D. Lacey, <u>Mol. Cryst. Liq</u> <u>Cryst.</u> <u>122</u> 205 (1985)
- M. F. Bone, A. H. Price, M. G. Clark, D. G. McDonnell, Liquid Crystals and Ordered Fluids 4 799, Plenum (1984)